| Name: | | _ Index No: | |--------------------------------------|--|------------------------| | 1408/312 | | Candidate's Signature: | | PHYSICS TECHNIQUES
June/July 2012 | and the same of th | Date: | | Time: 3 hour | (4.2) | | # THE KENYA NATIONAL EXAMINATIONS COUNCIL SCIENCE LABORATORY TECHNOLOGY CRAFT ### PHYSICS TECHNIQUES 3 hours #### INSTRUCTIONS TO CANDIDATES Write your name and index number in spaces provided above. Sign and write the date of the examination in the spaces provided. You should have a battery operated scientific calculator for this examination. This paper consists of TWO sections; A and B. Answer ALL the questions in section A and any TWO questions from section B. Maximum marks for each part of a question are as shown. Answer each question from section B on a fresh page. For Examiner's Use Only | Section | Question | Maximum
Marks | Candidate's
Score | |---------|----------|------------------|----------------------| | A | 1 - 15 | 60 | | | В | | 20 | | | | | 20 | | This paper consists of 16 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. ## SECTION A: (60 marks) ## Answer ALL the questions in this section | 1. | (a) | State the laws of refraction. (2 marks) | |----|-----|---| | | | | | | (a) | Calculate the refractive index of air with respect to glass, if the refractive index of glass with respect to air is 1.5. (2 marks) | | 2. | (a) | Define the following terms as applied to waves: (i) amplitude; (1 mark) | | | | (ii) wavelength. (1 mark) | | | (b) | Calculate the speed in S.I. units of a wave, with a wavelength of 0.2 metres and a period of 20 seconds. (2 marks) | | | | | | | | | | 3. | (a) | Define relative density. | (1 mark) | |----|-------|--|-------------------------| | | (b) | Calculate the mass of a spherical ball given that its radius is 1.3 cm and the of the materials from which it is made is 7.8g cm ⁻³ . | lensity of
(3 marks) | | | | | | | 4. | State | any four applications of the rays emitted by radio-isotopes. | (4 marks) | | | | | | | 5. | | rmine the distance at which an object must be placed so that a convex lens of form produces a real image enlarged four times by the ray construction method. | cal length
(4 marks) | | 6. | (a) | Differentiate between hard and soft magnetic materials. | (2 marks) | | | | | | | | - | | | | | (b) Give an example of each of (a) above. | (2 marks | |-------|---|---| | | State, with reason(s), the charge on a body if when brought near the cap of a p
gold-leaf electroscope causes the divergence of the gold-leaf to increase. | ositively charged
(4 marks | | | | | | - (| (a) State any two advantages of secondary cells over primary cells. | (2 marks) | | - | | | | - | b) Calculate the E.M.F. and internal resistance of a battery formed by conteach of E.M.F 1.5V and internal resistance 0.1Ω, in parallel. | necting two cells,
(2 marks) | | 1 1 1 | | | | 21 | Calculate the secondary current and the p.d. for an ideal transformer, whose pri
000 turns and the secondary coil 200 turns, given that the primary p.d. and cur
40V and 0.2A respectively. | mary coil has
trent are
(4 marks) | | - | | | | - | | | Calculate the current flowing through the 4Ω resistor in figure 1. 10. (4 marks) State any two advantages of semi-conductor diodes over thermoinic diodes. 11. (a) (2 marks) Explain why Alpha-rays yield higher ionization in gases than Beta-rays. (2 marks) (b) Differentiate between hard and soft X-rays. 12. (a) (2 marks) | the aid of sketches illustrate how short sightedness can be rectified using lenses. | (4 marks | |--|---| | | | | Define pressure. | (1 mark | | 200 | | | Calculate, in S.I. units, the pressure exerted on a steel ball immersed 3.0 metres the surface of a liquid of density 1.05cm ⁻³ . | s below
(3 marks) | | | | | State any two modes of heat transfer. | (2 marks) | | | Define pressure. Calculate, in S.I. units, the pressure exerted on a steel ball immersed 3.0 metre the surface of a liquid of density 1.05cm ⁻³ . | | (b) | Explain | n why | met | als are | better | conductors of heat than non-metals. | (2 marks | |-----|---|------------|--|----------|-----------------|---|---------------------------| The second | SECT | ON B: (40 marks) | | | | | | Ans | swer an | y TWO |) questions from this section. | | | (a) | (i) | | | the ma | ss of s | ea water displaced by a floating ship of mas | s 2000 | | | | (Dei | | of sea | water = | = 1030Kg m ⁻³) | (4 marks) | | | (ii) | a pie | ce of | the vol | of 100 | f brass of density 8.5g cm ⁻³ , which must be a g and density 0.2g cm ⁻³ , so that the two tog water. | attached to
ether just | | | | | | | | er as 1.0g cm ⁻³). | (6 marks) | | (b) | (i) Calculate the mass of steam condensed if dry steam at 100°C is
calorimeter of heat capacity 400JK⁻¹ containing 500g of water
(specific heat capacity of water = 4,200Jkg⁻¹K⁻¹) | | acity 400JK-1 containing 500g of water at 10 | | | | | | | | | | | | vaporization of water = $2,260,000 \text{JKg}^{-1}$ | (8 marks) | | | (ii) | State | e pos | sible so | urces o | of error in the result in b(i) above. | (2 marks | | | | | | | | | | | (a) | In an o | experi | iment | to dete | rmine
series | the e.m.f E and internal resistance r of a bat
with a variable resistance R and an ammete | tery, the | | | varied | , the c | curre | nt i was | record | led and the following results were obtained. | | | | R(S | 2) (| 0.7 | 2.5 | 5.5 | | | | | i(A | | 5.0 | 2.0 | 1.0 | | | | | 1/1 | | 4 13 | | | | | (i) 16. 17. Complete the table for $\frac{1}{i}$ (3 marks) (ii) Plot a graph of 1/2 against R. (7 marks) (iii) Determine the values of E and r using the graph, if i and R are related by E = i(R + r) (5 m (5 marks) (b) (i) Name the component A, B and C in figure 2. (3 marks) (ii) Explain how the above circuit is operated. (2 marks) - 18. (a) A monochromatic light beam of wavelength 6.0 x 10⁻⁷m in air passes from air to glass of refrative index 1.5. Calculate: - (i) the frequency; (2 marks) (ii) the speed in glass; (2 marks) (iii) the wavelength in glass. (2 marks) (speed of light in air is 3.0 x 108ms-1) - (b) A compound microscope consists of an objective lens of focal length 5.0 cm and an eye piece lens of focal length 8.0 cm separated by a distance of 19.0 cm. It is used to view an object placed 7.5 cm from the objective lens. Calculate: - (i) the distance of the first image formed from the objective lens; (3 marks) (ii) the distance of the second image formed from the eye piece lens; (5 marks) (iii) the magnification of the second image formed with respect to the object; (2 marks) (iv) the magnification of the second image formed with respect to the object. (4 marks) - (a) Calculate the fraction of Radium 226 that remains after 4800 years, given that its half-life is 1600 years. (4 marks) - (b) In figure 3, L is a magnetic coil and R is a photoresistor whose resistance falls when subjected to light. - (i) Describe how the switch in the circuit above is operated. (5 marks) - (ii) Calculate the resistance of R when the relay switches on, if base current is 20 mA at the instant, and assuming V_{be} is approximately zero. (2 marks) - (iii) Calculate the magnetic coil current when the relay switch is on. (take current gain as 50). (2 marks) - (c) Figure 4 represents two capacitors in series with a 6V cell #### Calculate: | (i) | net capacitance in the circuit; | (2 marks) | |--------|---------------------------------|-----------| | (ii) | charge in each capacitor; | (1 mark) | | (IIII) | Pd in each conscitor | (4 marks) | 1408/312 9 Turn over